Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 569
Filter
Add filters

Document Type
Year range
1.
Sustainability ; 15(11):8924, 2023.
Article in English | ProQuest Central | ID: covidwho-20245432

ABSTRACT

Assessing e-learning readiness is crucial for educational institutions to identify areas in their e-learning systems needing improvement and to develop strategies to enhance students' readiness. This paper presents an effective approach for assessing e-learning readiness by combining the ADKAR model and machine learning-based feature importance identification methods. The motivation behind using machine learning approaches lies in their ability to capture nonlinearity in data and flexibility as data-driven models. This study surveyed faculty members and students in the Economics faculty at Tlemcen University, Algeria, to gather data based on the ADKAR model's five dimensions: awareness, desire, knowledge, ability, and reinforcement. Correlation analysis revealed a significant relationship between all dimensions. Specifically, the pairwise correlation coefficients between readiness and awareness, desire, knowledge, ability, and reinforcement are 0.5233, 0.5983, 0.6374, 0.6645, and 0.3693, respectively. Two machine learning algorithms, random forest (RF) and decision tree (DT), were used to identify the most important ADKAR factors influencing e-learning readiness. In the results, ability and knowledge were consistently identified as the most significant factors, with scores of ability (0.565, 0.514) and knowledge (0.170, 0.251) using RF and DT algorithms, respectively. Additionally, SHapley Additive exPlanations (SHAP) values were used to explore further the impact of each variable on the final prediction, highlighting ability as the most influential factor. These findings suggest that universities should focus on enhancing students' abilities and providing them with the necessary knowledge to increase their readiness for e-learning. This study provides valuable insights into the factors influencing university students' e-learning readiness.

2.
CEUR Workshop Proceedings ; 3387:331-343, 2023.
Article in English | Scopus | ID: covidwho-20243702

ABSTRACT

The problem of introducing online learning is becoming more and more popular in our society. Due to COVID-19 and the war in Ukraine, there is an urgent need for the transition of educational institutions to online learning, so this paper will help people not make mistakes in the process and afterward. The paper's primary purpose is to investigate the effectiveness of machine learning tools that can solve the problem of assessing student adaptation to online learning. These tools include intelligent methods and models, such as classification techniques and neural networks. This work uses data from an online survey of students at different levels: school, college, and university. The survey consists of questions such as gender, age, level of education, whether the student is in the city, class duration, quality of Internet connection, government/non-government educational institution, availability of virtual learning environment, whether the student is familiar with IT, financial conditions, type of Internet connection, a device used for studying, etc. To obtain the results on the effectiveness of online education were used the following machine learning algorithms and models: Random Forest (RF), Extra Trees (ET), Extreme, Light, and Simple Gradient Boosting (GB), Decision Trees (DT), K-neighbors (K-mean), Logistic Regression (LR), Support Vector Machine (SVM), Naїve Bayes (NB) classifier and others. An intelligent neural network model (NNM) was built to address the main issue. © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR Workshop Proceedings (CEUR-WS.org)

3.
2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20242502

ABSTRACT

The COVID-19 condition had a substantial impact on the education sector, corporate sector and even the life of individual. With this pandemic situation e-learning/distance learning has become certain in the education sector. In spite of being beneficial to students and teachers, its efficacy in the education domain depends on several factors such as handiness of ICT devices in various socio economic groups of people and accessible internet facility. To analyze the effectiveness of this new system of e learning Sentiment Analysis plays a predominant role in identifying the user's perception. This paper focus on identifying opinions of social media users i.e. Twitter on the most prevailing issue of online learning. To analyze the subjectivity and polarity of the dynamic tweets extracted from Twitter the proposed study adopts TextBlob. As Machine Learning (ML) models and techniques manifests superior accuracy and efficacy in opinion classification, the proposed solution uses, TF-IDF (Term Frequency-Inverse Document Frequency) as feature extraction technique to build and evaluate the model. This manuscript analyses the performance of Multinomial Naive Bayes Classifier, DecisionTreeClassifier, SVC and MLP Classifier with respect to performance measure as Accuracy. © 2022 IEEE.

4.
Revista Medica del Hospital General de Mexico ; 85(2):72-80, 2022.
Article in English | EMBASE | ID: covidwho-20242016

ABSTRACT

Objective: Intensive care units (ICUs) collapsed under the global wave of coronavirus disease 2019 (COVID-19). Thus, we designed a clinical decision-making model that can help predict at hospital admission what patients with COVID-19 are at higher risk of requiring critical care. Method(s): This was a cross-sectional study in 119 patients that met hospitalization criteria for COVID-19 including less than 30 breaths per minute, peripheral oxygen saturation < 93%, and/or >= 50% lung involvement on imaging. Depending on the need for critical care, patients were retrospectively assigned to ICU and non-ICU groups. Demographic, clinical, and laboratory parameters were collected at admission and analyzed by classification and regression tree (CRT). Result(s): Forty-five patients were admitted to ICU and 80% of them were men older than 57.13 +/- 12.80 years on average. The leading comorbidity in ICU patients was hypertension. The CRT revealed that direct bilirubin (DB) > 0.315 mg/dl together with the neutrophil-to-monocyte ratio (NMR) > 15.90 predicted up to correctly in 92% of the patients the requirement of intensive care management, with sensitivity of 93.2%. Preexisting comorbidities did not influence on the tree growing. Conclusion(s): At hospital admission, DB and NMR can help identify nine in 10 patients with COVID-19 at higher risk of ICU admission.Copyright © 2022 Sociedad Medica del Hospital General de Mexico.

5.
2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development, OTCON 2022 ; 2023.
Article in English | Scopus | ID: covidwho-20239957

ABSTRACT

India's capital markets are witnessing intense uncertainty due to global market failures. Since the outbreak of COVID-19, risk asset prices have plummeted sharply. Risk assets declined half or more compared to the losses in 2008 and 2009. The high volatility is likely to continue in the short term;as a result, the Indian markets have declined sharply. In this paper, we have used different algorithms such as Gated Recurrent Unit, Long Short-Term Memory, Support Vector Regressor, Decision Tree, Random Forest, Lasso Regression, Ridge Regression, Bayesian Ridge Regression, Gradient Boost, and Stochastic Gradient Descent Algorithm to predict financial markets based on historical data available along with economic and financial features during this pandemic. According to our findings, deep learning models can accurately estimate financial indexes by utilizing non-linear transaction data. We found that the Gated Recurrent Unit performs better than the existing model. © 2023 IEEE.

6.
Applied Sciences ; 13(11):6438, 2023.
Article in English | ProQuest Central | ID: covidwho-20237996

ABSTRACT

Featured ApplicationThe research has a potential application in the field of fake news detection. By using the feature extraction technique, TwIdw, proposed in this paper, more relevant and informative features can be extracted from the text data, which can lead to an enhancement in the accuracy of the classification models employed in these tasks.This research proposes a novel technique for fake news classification using natural language processing (NLP) methods. The proposed technique, TwIdw (Term weight–inverse document weight), is used for feature extraction and is based on TfIdf, with the term frequencies replaced by the depth of the words in documents. The effectiveness of the TwIdw technique is compared to another feature extraction method—basic TfIdf. Classification models were created using the random forest and feedforward neural networks, and within those, three different datasets were used. The feedforward neural network method with the KaiDMML dataset showed an increase in accuracy of up to 3.9%. The random forest method with TwIdw was not as successful as the neural network method and only showed an increase in accuracy with the KaiDMML dataset (1%). The feedforward neural network, on the other hand, showed an increase in accuracy with the TwIdw technique for all datasets. Precision and recall measures also confirmed good results, particularly for the neural network method. The TwIdw technique has the potential to be used in various NLP applications, including fake news classification and other NLP classification problems.

7.
International Conference on Enterprise Information Systems, ICEIS - Proceedings ; 1:156-163, 2023.
Article in English | Scopus | ID: covidwho-20237560

ABSTRACT

Higher education institutions confronted an escalating unexpected pressure to rapidly transform throughout and after the COVID-19 pandemic, by replacing most of the traditional teaching practices with online-based education. Such transformation required institutions to frequently strive for qualities that meet conceptual requirements of traditional education due to its agility and flexibility. The challenge of such electronic learning styles remains in their potential of bringing out many challenges, along with the advantages it has brought to the educational systems and students alike. This research came to shed the light on several factors presented as a predictive model and proposed to contribute to the success or failure in terms of students' satisfaction with online learning. The study took the kingdom of Jordan as a case example country experiencing online education while and after the covid -19 intensive implementation. The study used a dataset collected from a sample of over "300” students using online questionnaires. The questionnaire included "25” attributes mined into the Knime analytics platform. The data was rigorously learned and evaluated by both the "Decision Tree” and "Naive Bayes” algorithms. Subsequently, results revealed that the decision tree classifier outperformed the naïve bayes in the prediction of student satisfaction, additionally, the existence of the sense of community while learning electronically among other reasons had the most contribution to the satisfaction. Copyright © 2023 by SCITEPRESS - Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

8.
International Journal of Emerging Technologies in Learning ; 18(10):184-203, 2023.
Article in English | Scopus | ID: covidwho-20237547

ABSTRACT

During the COVID-19 Pandemic, many universities in Thailand were mostly locked down and classrooms were also transformed into a fully online format. It was challenging for teachers to manage online learning and especially to track student behavior since the teacher could not observe and notify students. To alleviate this problem, one solution that has become increasingly important is the prediction of student performance based on their log data. This study, therefore, aims to analyze student behavior data by applying Predictive Analytics through Moodle Log for approximately 54,803 events. Six Machine Learning Classifiers (Neural Network, Random Forest, Decision Tree, Logistic Regression, Linear Regression, and Support Vector Machine) were applied to predict student performance. Further, we attained a comparison of the effectiveness of early prediction for four stages at 25%, 50%, 75%, and 100% of the course. The prediction models could guide future studies, motivate self-preparation and reduce dropout rates. In the experiment, the model with 5-fold cross-validation was evaluated. Results indicated that the Decision Tree performed best at 81.10% upon course completion. Meanwhile, the SVM had the best result at 86.90% at the first stage, at 25% of the course, and Linear Regression performed with the best efficiency at the middle stages at 70.80%, and 80.20% respectively. The results could be applied to other courses and on a larger e-learning systems log that has similar student activity conditions and this could contribute to more accurate student performance prediction © 2023, International Journal of Emerging Technologies in Learning.All Rights Reserved.

9.
Nihon Ringakkai Shi/Journal of the Japanese Forestry Society ; 105(3):76-86, 2023.
Article in Japanese | Scopus | ID: covidwho-20236816

ABSTRACT

After the Second World War, camping and camping sites in forests have developed and increased significantly from the 1980 s to 1990 s in Japan, relying on the laws and institutions established from the 1950 s to 1970 s across multiple administrative sectors, obtaining social approval as a legitimatized outdoor activity and forest use. Since the 2000s, the management of these camping sites has deteriorated mainly owing to economic recession, which caused the movement of camping site renewal by the private sector. This movement directed the diversification of forest use by camping sites in recent years. Camping facilities have been developed in many ways to meet the needs of campers, including organized group camps that promote education and experience in forests, solo camps, glamping, and workcations under the spread of the COVID-19 that demand relaxing or productive environment, and leisure camps that require enrichment of outdoor activities. As a result of this diversification, possibilities for effective utilization of forests and regional revitalization through the management of camping sites have been observed. Many camping sites have utilized forest lands, standing trees, and forest spaces to develop facilities and services, and there are cases where firewood production for campers has promoted the reorganization and development of local forestry and securing of personnel for forest management. In addition to securing local employment brought by reorganization, local revitalization in rural and mountainous areas has been promoted through the linkage of the needs of campers to positive economic effects, increase of the visitors who deeply connected to local people, and comprehensive and sustainable use of resources in local societies. © 2023 Nihon Ringakkai. All rights reserved.

10.
Research on Biomedical Engineering ; 2023.
Article in English | Scopus | ID: covidwho-20236113

ABSTRACT

Purpose: In December 2019, the Covid-19 pandemic began in the world. To reduce mortality, in addiction to mass vaccination, it is necessary to massify and accelerate clinical diagnosis, as well as creating new ways of monitoring patients that can help in the construction of specific treatments for the disease. Objective: In this work, we propose rapid protocols for clinical diagnosis of COVID-19 through the automatic analysis of hematological parameters using evolutionary computing and machine learning. These hematological parameters are obtained from blood tests common in clinical practice. Method: We investigated the best classifier architectures. Then, we applied the particle swarm optimization algorithm (PSO) to select the most relevant attributes: serum glucose, troponin, partial thromboplastin time, ferritin, D-dimer, lactic dehydrogenase, and indirect bilirubin. Then, we assessed again the best classifier architectures, but now using the reduced set of features. Finally, we used decision trees to build four rapid protocols for Covid-19 clinical diagnosis by assessing the impact of each selected feature. The proposed system was used to support clinical diagnosis and assessment of disease severity in patients admitted to intensive and semi-intensive care units as a case study in the city of Paudalho, Brazil. Results: We developed a web system for Covid-19 diagnosis support. Using a 100-tree random forest, we obtained results for accuracy, sensitivity, and specificity superior to 99%. After feature selection, results were similar. The four empirical clinical protocols returned accuracies, sensitivities and specificities superior to 98%. Conclusion: By using a reduced set of hematological parameters common in clinical practice, it was possible to achieve results of accuracy, sensitivity, and specificity comparable to those obtained with RT-PCR. It was also possible to automatically generate clinical decision protocols, allowing relatively accurate clinical diagnosis even without the aid of the web decision support system. © 2023, The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering.

11.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12467, 2023.
Article in English | Scopus | ID: covidwho-20235035

ABSTRACT

MIDRC was created to facilitate machine learning research for tasks including early detection, diagnosis, prognosis, and assessment of treatment response related to the COVID-19 pandemic and beyond. The purpose of the Technology Development Project (TDP) 3c is to create resources to assist researchers in evaluating the performance of their machine learning algorithms. An interactive decision tree has been developed, organized by the type of task that the machine learning algorithm is being trained to perform. The user can select information such as: (a) the type of task, (b) the nature of the reference standard, and (c) the type of the algorithm output. Based on the user responses, they can obtain recommendations regarding appropriate performance evaluation approaches and metrics, including literature references, short video tutorials, and links to available software. Five tasks have been identified for the decision tree: (a) classification, (b) detection/localization, (c) segmentation, (d) time-to-event analysis, and (e) estimation. As an example, the classification branch of the decision tree includes binary and multi-class classification tasks and provides suggestions for methods and metrics as well as software recommendations, and literature references for situations where the algorithm produces either binary or non-binary (e.g., continuous) output and for reference standards with negligible or non-negligible variability and unreliability. The decision tree has been made publicly available on the MIDRC website to assist researchers in conducting task-specific performance evaluations, including classification, detection/localization, segmentation, estimation, and time-to-event tasks. © COPYRIGHT SPIE. Downloading of the is permitted for personal use only.

12.
2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20233946

ABSTRACT

Air pollution is one of the most significant concerns of the present era, which has severe and alarming effects on human health and the environment, thereby escalating the climate change issue. Hence, in-depth analysis of air pollution data and accurate air quality forecasting is crucial in controlling the growing pollution levels. It also aids in designing appropriate policies to prevent exposure to toxic pollutants and taking necessary precautionary measures. Air quality in Delhi, the capital of India, is inferior compared to other major cities in the world. In this study, daily and hourly concentrations of air pollutants in the Delhi region were collected and analyzed using various methods. A comparative analysis is performed based on months, seasons, and the topography of different stations. The effect of the Covid-19 lockdown on the reduction of pollutant levels is also studied. A correlation analysis is performed on the available data to show the relationships and dependencies among different pollutants, their relationship with weather parameters, and the correlations between the stations. Various machine learning models were used for air quality forecasting, like Linear Regression, Vector Auto Regression, Gradient Boosting Machine, Random Forest, and Decision Tree Regression. The performance of these models was compared using RMSE, MAE, and MAPE metrics. This study is focused on the dire state of air pollution in Delhi, the primary reasons behind it, and the efficacy of calculated lockdowns in bringing down pollution levels. It also highlights the potential of Linear Regression and Decision Tree Regression models in predicting the air quality for different time intervals. © 2022 IEEE.

13.
Sustainability ; 15(11):8967, 2023.
Article in English | ProQuest Central | ID: covidwho-20233491

ABSTRACT

Due to the COVID-19 pandemic, the tourism sector has been one of the most affected sectors and requires management entities to develop urgent measures to reactivate and achieve digital transformation using emerging disruptive technologies. The objective of this research is to apply machine learning techniques to predict visitors to tourist attractions on the Moche Route in northern Peru, for which a methodology based on four main stages was applied: (1) data collection, (2) model analysis, (3) model development, and (4) model evaluation. Public data from official sources and internet data (TripAdvisor and Google Trends) during the period from January 2011 to May 2022 are used. Four algorithms are evaluated: linear regression, KNN regression, decision tree, and random forest. In conclusion, for both the prediction of national and foreign tourists, the best algorithm is linear regression, and the results allow for taking the necessary actions to achieve the digital transformation to promote the Moche Route and, thus, reactivate tourism and the economy in the north of Peru.

14.
Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria ; 21(1):13-20, 2022.
Article in Polish | CAB Abstracts | ID: covidwho-20232366

ABSTRACT

Procurement of game animals is a major source of revenue for hunting clubs in Poland. For several years, the game meat buying market has been showing an upward trend, but this situation is also influenced by random factors that negatively affect the value of the game meat buying market. For several years in our country we have been struggling with the ASF virus, and since 2020, negative effects in the economy related to the occurrence of the SARS-CoV virus have been observed, also affecting the hunting sector with its activities. The aim of the study was to analyze the dynamics of game meat procurement in Poland in the years 2009-2021. The data concerned the three most important species, namely deer, roe deer and wild boar. The analysis covered the quantity of game meat, procurement value and the average price of game meat depending on animal species. The conducted research confirmed an upward trend in the volume and value of game meat procurement for all the analysed game species. Similarly, the average procurement prices of roe dee and wild boar meat with the exception of red deer, showed an upward trend. The study confirmed the negative impact of the ASF virus and the SARS-CoV-2 virus on the game meat buying market in Poland.

15.
Proceedings of 2023 3rd International Conference on Innovative Practices in Technology and Management, ICIPTM 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20232364

ABSTRACT

The Internet of Medical Things (IoMT) has been applied to provide health care facilities for elders and parents. Remote health care is essential for providing scarce resources and facilities to coronavirus patients. Ongoing IoMT communication is susceptible to potential security attacks. In this research, an artificial intelligence-driven security model of the IoMT is also proposed to simulate and analyses the results. Under the proposed plan, only authorized users will be able to access private and sensitive patient information, and unauthorized users will be unable to access a secure healthcare network. The various phases for implementing artificial intelligence (AI) techniques in the IoMT system have been discussed. AI-driven IoMT is implemented using decision trees, logistic regression, support vector machines (SVM), and k-nearest neighbours (KNN) techniques. The KNN learning models are recommended for IoMT applications due to their low consumption time with high accuracy and effective prediction. © 2023 IEEE.

16.
IOP Conference Series : Earth and Environmental Science ; 2022.
Article in English | CAB Abstracts | ID: covidwho-20231453

ABSTRACT

These proceedings, with a theme of Natural Resources and Technology for Achieving Sustainable Development Goal through Academic, Industry, and Community and a subtheme of Resilience and Innovation Research on Sustainable Natural Resources and Technology Post-Covid 19, contain 104 articles covering 6 major topics in the related fields such as (i) Natural science and natural product, (ii) Natural resource technology, (iii) Information systems of tropical resources, (iv) Tropical biodiversity, (v) Food science and food technology, and (vi) Ethnobotany and ethnozoology.

17.
Heliyon ; 9(6): e17182, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20244891

ABSTRACT

Objectives: Understand whether and how the COVID-19 pandemic affects the risk of different types of conflict worldwide in the context of climate change. Methodology: Based on the database of armed conflict, COVID-19, detailed climate, and non-climate data covering the period 2020-2021, we applied Structural Equation Modeling specifically to reorganize the links between climate, COVID-19, and conflict risk. Moreover, we used the Boosted Regression Tree method to simulate conflict risk under the influence of multiple factors. Findings: The transmission risk of COVID-19 seems to decrease as the temperature rises. Additionally, COVID-19 has a substantial worldwide impact on conflict risk, albeit regional and conflict risk variations exist. Moreover, when testing a one-month lagged effect, we find consistency across regions, indicating a positive influence of COVID-19 on demonstrations (protests and riots) and a negative relationship with non-state and violent conflict risk. Conclusion: COVID-19 has a complex effect on conflict risk worldwide under climate change. Implications: Laying the theoretical foundation of how COVID-19 affects conflict risk and providing some inspiration for the implementation of relevant policies.

18.
Science and Children ; 60(5):20-23, 2023.
Article in English | ProQuest Central | ID: covidwho-2324582

ABSTRACT

One would expect a wildfire exploration in a region prone to wildfires to begin close to home, not Australia, but that is where it started. Lowry teaches preK in a constructivist school in an area prone to wildfires, earthquakes, winds, and floods. One of her students went back to visit relatives in Australia during the winter of the 2019-2020 school year, immediately before the initial COVID-19 quarantine. They emailed the student regularly and heard about the intense heat where he was visiting. They looked up Australia in the news and saw images of the wildfires. After a little work comparing Australia and their area, one of the students said, "This could happen here! We HAVE to do something!"

19.
Decision Making: Applications in Management and Engineering ; 6(1):219-239, 2023.
Article in English | Scopus | ID: covidwho-2322042

ABSTRACT

The overall purpose of this paper is to define a new metric on the spreadability of a disease. Herein, we define a variant of the well-known graph-theoretic burning number (BN) metric that we coin the contagion number (CN). We aver that the CN is a better metric to model disease spread than the BN as the CN concentrates on first time infections. This is important because the Centers for Disease Control and Prevention report that COVID-19 reinfections are rare. This paper delineates a novel methodology to solve for the CN of any tree, in polynomial time, which addresses how fast a disease could spread (i.e., a worst-cast analysis). We then employ Monte Carlo simulation to determine the average contagion number (ACN) (i.e., a most-likely analysis) of how fast a disease would spread. The latter is analyzed on scale-free graphs, which are specifically designed to model human social networks (sociograms). We test our method on some randomly generated scale-free graphs and our findings indicate the CN to be a robust, tractable (the BN is NP-hard even for a tree), and effective disease spread metric for decision makers. The contributions herein advance disease spread understanding and reveal the importance of the underlying network structure. Understanding disease spreadability informs public policy and the associated managerial allocation decisions. © 2023 by the authors.

20.
2023 International Conference on Intelligent Systems for Communication, IoT and Security, ICISCoIS 2023 ; : 157-161, 2023.
Article in English | Scopus | ID: covidwho-2327239

ABSTRACT

This project aims to devise an alternative for Coronavirus detection using various audio signals. The aim is to create a machine-learning model assisted by speech processing techniques that can be trained to distinguish symptomatic and asymptomatic Coronavirus cases. Here the features exclusive to the vocal cord of a person is used for covid detection. The procedure is to train the classifier using a data set containing data of people of various ages both infected and disease-free, including patients with comorbidities. We presented a machine learning-based Coronavirus classifier model that can separate Coronavirus positive or negative patients from cough, breathing, and speech recordings. The model was trained and evaluated using several machine learning classifiers such as Random Forest Classifier, Logistic Regression (LR), Decision Tree Classifier, k-nearest Neighbour (KNN), Naive Bayes Classifier, Linear Discriminant Analysis, and a neural network. This project helps track COVID-19 patients at a low cost using a non-contactable procedure and reduces the workload on testing centers. © 2023 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL